Showing posts with label Anti-viral. Show all posts
Showing posts with label Anti-viral. Show all posts

Friday, July 1, 2022

New Clinical Trials of Griffithsin pharmaceutical designed against infection by coronaviruses

This is huge.  

Dr. Kenneth Palmer's group have been working hard to get a Griffithsin based pharmaceutical into clinical trials for some time and now a phase 1b trial is beginning. 

The pharmaceutical is designed to prevent entry into the cells by coronaviruses.

https://clinicaltrials.gov/ct2/show/NCT05437029

https://discoveria.com/studies/NCT05122260

The Pharmaceutical is in the form of a nasal spray which is an effective route to block the coronaviruses that gain access through the respiratory system.

Phase one trials are the first of four phases of clinical trials with human volunteers (They are now accepting volunteers for this study) designed to test the pharmaceutical on healthy individuals to see if any unwanted detrimental effects occur from the drug.  

If and when Q-Griffithsin is approved by the FDA, the method of biomanufacturing will likely involve large scale expression in plants, in this case nicotiana (tobacco).  

Congratulations, Dr. Palmer, on getting clinical trials underway!



Thursday, April 22, 2021

Project GRFT in the lab and in the fields - a plan

 


People have asked the question, “If Griffithsin is such a potent anti-viral, why is it not being manufactured?  Why is it not generally available and being used to stop viral outbreaks such as Covid-19?”  It’s a very good question.  There are a few efforts being made to biomanufacture griffithsin and at least one to get it into clinical trials.  In March, 2020, I couldn’t find anything to indicate that it was in any pharma company pipeline. I decided that if no one is working on this, I would put my shoulder to the wheel and do work on its development.  First I reached out to researchers around the world who had worked with griffithsin.  I reached out to my friends in the biohacking community.  There were a few people who responded at first and we started a group of friends to take on a rather enormous project with a goal of making griffithsin available to the world. 

The arts of molecular biology and biotechnology demonstrate that genes from one organism may be placed into another organism which will read the sequence information and from it make a peptide or polypeptide in the cells.  There is a large and thriving industry based on this.  We were searching for the best method for biohackers with limited resources to use to produce griffithsin on an epic scale.  Most of our experience with protein expression had been with bacteria so far.  E-coli is widely used for this because it grows rapidly and is relatively inexpensive and easy to work with.  Bacteria has certain drawbacks, however.  For example bacteria is a prokaryote, lacking organelles and the protein folding may not work well in eukaryotes such as animals.  On the other end of things, much pharmaceutical Biomanufacturing uses animal cells for expression.  The folding then is correct for animal or human use.  The drawback with animal cells is that they are difficult to work with, grow slowly, and are extremely subject to contamination by any number of organisms.  Stringent laboratory procedures are needed to ensure sterility during transfection and the growth cycle.  This works well for pharmaceutical companies with the resources to carry it out, however Biomanufacturing using animal cells is very expensive to set up and maintain. 

Some of the scientists who responded to our inquiries used plants to express griffithsin with good results.  Dr. Yavar Vafaee, Ph.D. had published his research: “Heterologous production of recombinant anti-HIV microbicide griffithsin in transgenic lettuce and tobacco lines” and was very kind in advising and getting me started in the exciting new direction of plant molecular biology.  We also were fortunate to find Dr. Evangelia Vamvaka, Ph.D. who had been working in Dr. Jennifer Doudna’s lab at UCB.  She had previously done a great deal of research with griffithsin and published papers such as “Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV”.  After reading her papers and speaking with her, we decided that her method was the one that would work the best to meet our biomanufacturing goals as biohackers with limited resources.  Expression in rice has a number of advantages, such as rice being non-toxic and generally regarded as safe, and when harvested and dried, it can be stored for long periods of time without trouble. Dr. Vamvaka’s research shows that the folding of the protein is correct and that the antiviral properties are present as expressed in rice.  

Our group, Project GRFT formed, started meeting and working.   Our goal is to grow transgenic rice containing the polypeptide griffithsin and to make this rice available worldwide for research.        To be continued....

Tuesday, March 9, 2021

Project GRFT: The story so far

In this and the posts to follow, we will introduce project GRFT, what this project is doing, and why it's important.  GRFT = Griffithsin.  The first part of our story starts here. 

**********************************************************************************************************************************************************************

Seaweed

In the 1800’s a widow, Mrs. Amelia Griffiths (1768-1858), roamed the seacoasts of Devon, Cornwall and Dorset with her wicker basket in hand, passionately collecting and cataloging the marine algae commonly known as seaweed.  In honor of Mrs. Griffiths and her contributions to the science of phycology, the Swedish marine botanist Carl Adolph Agardh named a genus of red marine algae “Griffithsia”. 

Griffithsia setacea from Griffiths’ books. © 2014 Royal Albert Memorial Museum & Art Gallery, Exeter City Council

Griffithsia are eukaryotic organisms of the Rhodophylum (Rhodo, from the ancient Greek, Rhodon, Rose and phylum which in the taxonomy stack is below kingdom and above class). Griffithsia are found in the oceans of the world. They dance gracefully in Neptune’s realm off the Coast of New Zealand. 

Viruses

In the late 1800’s, tobacco plantations in the Ukraine and Bessarabia (now Moldova) were, like many other plantations worldwide, infected with a disease that caused spots on the leaves causing a mottled appearance or mosaic pattern.  This was called mosaic disease because the patterns sometimes resembled mosaics.  The disease could and did destroy entire tobacco crops.  Scientists in Russia and Europe started an inquiry into the cause of the disease.  Was it a mold or a bacteria?  Was it something else?  Conducting experiments, they found that the agent which infected the plants passed through filters with a small pore size that would have stopped bacterial cells.  It could not be seen with the microscopes in use at the time.  It would not grow on prepared media on which bacteria or fungi would thrive.  So this was something as yet undiscovered.  Dmitry I. Ivanovsky and Martinus W. Beijerinck started the groundwork for what would become Virology, the study of viruses. 

What is a virus?  First we should look at what a virus is not.  Animal, vegetable, or mineral it is not.  Fungus or bacteria it is not.  Viruses can't be considered cells or independently living organisms. Perhaps viruses are best imagined as being exquisite alien machines running a program to inject nucleotides into  living cells causing the cellular mechanism to produce more of the virus.  Viruses are made of nucleotides often dressed up in a protein coat or capsid. 

Not all viruses cause health problems.  Some we find useful for a wide variety of applications including Biomanufacturing by the expression of of recombinant protein in organisms.  Viruses considered pathogenic to humans only number about 100 - 200 varieties. These disease causing viruses, however, represent a major health concern and are a significant cause of mortality and suffering worldwide.

Prevention of viral outbreaks

 

Prevention of the spread of pathogenic viruses may be accomplished in several ways, for example: 

1.        Physical distancing, physical barriers.

These keep the virus particles, known as virions, away from cells by methods such as masking and wearing other PPE, also by air filtration.

 

2.       Vaccines

Vaccination stimulates the immune response with the body producing antibodies against the particular virus.   Vaccination usually only requires 1-3 doses of the vaccine and may provide immunization for a lifetime.

 

 

Antivirals

Antivirals prevent the virus from hijacking cells in the host and replicating.  The antiviral works typically by blocking entry into the cell by the virus.  Antivirals need to be taken whenever there is danger of the transmission of a virus.  Antivirals generally work against pathogenic viruses when administered before or at the first stages of infection.  


Antiviral lectins

A lectin may be defined as a carbohydrate binding protein. 

Lectins are found in everywhere in nature including in the food we eat. 

An example of an antiviral lectin is BanLec or banana lectin.  Found in the bananas Musa acuminata and Musa balbisiana, BanLec has been shown to be effective against HIV. 

Other examples of effective antiviral lectins found in nature are cyanovirin-N, scytovirin, and microvirin.   

Griffithsin

   Of all the known antiviral lectins found in nature, perhaps griffithsin, the red seaweed protein, is the shining star. Besides being free of significant toxicity, griffithsin is the most powerful of any of the lectins at inhibiting enveloped viruses from entering cells.  

Griffithsin, or GRFT is a 121 amino acid, 12.7 kDa protein.



Wild type GRFT:

Please take a look at position 31 above.   In wild GRFT, this is a non-standard amino acid and in recombinant GRFT this is generally replaced by substituting alanine (the red A).

The yellow arrows designate the secondary B-sheet structures of the protein.

GRFT is a dimer and has 3 triangular prismatic blades in the Beta sheets.  These separately have been shown to have some antiviral properties, however together in griffithsin’s domain swapped dimer they are more powerful, just as two hands can grab and hold with more strength than one hand.  This dimeric structure has six carbohydrate binding sites that work together.  

An interactive 3D model of the GRFT protein structure may be found here, scroll down to "Structure" and play with it.

 

Future episodes to follow!

Monday, July 11, 2016

Molecule controls infection by variety of RNA viruses

There are basically 2 parts to the immune system, innate immunity and  adaptive immunity (these may overlap).   Innate immunity refers to nonspecific defense mechanisms that come into play immediately or within hours of an antigen's appearance in the body. These mechanisms include physical barriers such as skin, chemicals in the blood, and immune system cells that attack foreign cells in the body. The innate immune response is activated by chemical properties of the antigen.
RIG-1 (Retinioic Acid Inducible Gene-1) is found in human cells.  It functions to recognize viral pathogens by their molecular patterns and like the legendary Paul Revere, gallops down signalling patways to alert and set in motion the expression of innate immune response genes.  When the transcription factor IRF3 is alerted it leaps into action and a coalition of molecules (i.e.type 1 interferon) are expressed to control the invading virus.  

So it is July, please excuse my red, white and blue interpretation,  but I think this is an important study in the development of the new generation of broad spectrum antiviral drugs.  In vitro experiments indicate compounds activating IRF3 showed activity against  West Nile virus, dengue virus and hepatitis C virus (Flaviviridae), Ebola virus, influenza A virus, Lassa virus, respiratory syncytial virus, Nipah virus (Filoviridae). Has anyone out there tested this with zika virus - also of the family Flaviviridae?  

Here is a link to the abstract and paper 
















Saturday, July 9, 2016

Excerpt from protocol/labnotes

Excerpt from the protocol:
Nenufar – antiviral research project 01 – Expression and purification of peptide LBOUNCER from the synthetic  gene VRBNCR-01 inserted into an e-coli plasmid vector, transformed and induced to grow on bacteria.  Explore how to do this in a fast and consistent way with the highest purity.
Experiment 01A:
DNA synthesis of the VRBNCR-01 gene which is inserted into a pET15 expression plasmid with a His 6 tag on the N-Terminus followed by a thrombin cleavage site.  The gene will be cloned into pET15b via NdeI and BamHI. We will use heat transform into competent cells, then plate out on Amp-agar to grow colonies.  Induce for expression.

Then on to Experiment 01B: purification using chromatography and SDS page



I contacted a lab in the San Francisco Bay Area where we can work.  All in all, we are going to do a lot of improvising so we can stretch the budget and work for at least 6 months on the experiment. Everyone is volunteering their time. We have wonderful mentors and we are learning by doing, the biohacker way.  It is always a steep learning curve as anyone who has worked in molecular biology knows.  The journey of discovery makes it worthwhile.  Thanks to all of you who are making this possible.